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Motivation

• Decision Making with
Uncertain Opinions

• When Useful?
• Trust in social
networks

• Opinion diffusion
• Graph summarization.

In a traffic network, how can we predict
the traffic condition of unobserved roads
(e.g., congested vs. non-congested)?

What if we have so many observations?

2



Research Problem & Challenges

Given

• G = (V,E = Y ∪ X, f), an input network;
• {y(1), · · · , y(T)}, the observations of a vector of input Boolean variables
and ωy = (ωy1 , · · · , ωyM), the subjective opinions on y.

Predict ωx, the unknown opinion on the vector of target Boolean variables x.

How can we accurately and efficiently predict unknown opinions with a
large, heterogeneous, uncertain network data?
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Contributions

Research goal: Accurately and efficiently predict unknown opinions
with a large, heterogeneous, uncertain network data.
Key Contribution:

1. The proposed GCN-based framework is the first deep learning
framework that is capable of predicting the opinions of multiple
nodes in a network collectively.

2. The proposed GCN-based method achieves both efficiency and
effectiveness by leveraging the GCN to model heterogeneous
dependencies and knowledge distillation to transfer the
heterogeneous dependencies into the prediction of opinions.

3. We validate the performance of our proposed approach through
two road traffic datasets.
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Uncertain, Subjective Opinion in Subjective Logic (SL)

• A binomial opinion is defined in terms of belief, disbelief, and
uncertainty towards a given proposition. An opinion ω is
represented by

ω = (b,d,u,a) (1)

where
• b: belief (e.g., agree)
• d: disbelief (e.g., disagree)
• u: uncertainty (i.e., ignorance, vacuity, or lack of evidence)
• a: a base rate, a prior, general knowledge upon no commitment

and

b+ d+ u = 1 (2)
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SL’s Binomial Opinion with Beta Distribution

• A binomial opinion follows a Beta PDF, denoted by,

Beta(p|α, β) = 1
B(α, β)p

α−1(1− p)β−1 (3)

where α is the number of positive evidence and β is the number
of negative evidence.

• ω = (α, β), which can be translated to ω = (b,d,u,a).
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Operators with Uncertain Opinions in SL

• Discount operator, ⊗: Discount trust of an entity one wants to
interact when it does not have any direct interaction with the
entity, e.g., wik = wij ⊗ wjk

• Consensus operator, ⊕: Find a consensus between two opinions
where two entities observe a same entity, e.g.,
wik = (wij ⊗ wjk)⊕ (wih ⊗ whk)

[Jøsang, Springer 2016]
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Scalability Issue in Subjective Logic

When a network is large, there are too many paths to consider for
fusing them.

Limitation
SL’s operators are good for fusing two opinions in dyadic
relationships; not scalable for multiple opinions with large network
data.
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Collective Subjective Logic (CSL)

A variant of SL, combining Probabilistic Soft Logic (PSL) and Markov
Random Fields (MRFs) with SL

max
ωx,ξ≥0

L(ωx) = max
ωx,ξ≥0

logProb(y;ωx, ωy)

s.t.ρiEProb(px,y|y;ωx,ωy)[1− ri(px,y)] ≤ ξi, ∥ξ∥β ≤ ϵ, i = 1, · · · , k

Limitation
The assumption of distribution based on MRFs limits its capability to
deal with, large-scale, heterogeneous network data that may be
lossy, noisy, incomplete, and/or missing.

[Chen, Wang & Cho, Bigdata 2017]
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Why Deep Learning Needed?

Both SL and CSL are:

• not scalable.
• not effectively dealing with heterogeneous data.

How to Solve These Challenge?

Graph Convolutional Network can provide solutions for

• dealing with graph
network data

• modeling
heterogeneous
dependency

• processing large-scale
data (i.e., scalability)

[Kipf & Welling, ICLR 2017]
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Graph Convolutional Networks (GCN)

What capability can GCN offer?

• node classification
• graph classification

How to use the convolution operator on graph data effectively and
efficiently?
Graph Fourier Transform:

• on Euclidean spaces: r =
∑

k≥0 r̂keik
• on non-Euclidean spaces: r =

∑
k≥0 r̂kϕk = ϕTϕr

where L = ΦΛΦT, L is the Graph Laplacian matrix,
Φ = (ϕ1, · · · ,ϕn) is the orthonormal eigenvectors and
Λ = diag(λ1, · · · , λn) is the diagonal matrix of eigen values.
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Graph Convolution

• Given two signals r and b on graph, graph convolution

r ⋆ b = ΦT(ΦTr) ◦ (ΦTb) = Φdiag(̂r1, · · · , r̂n)b̂, (4)

convolution on Fourier domain is element-wise product of their
Fourier transformations

• Graph convolutional layer

gθ ⋆ r = ΦgθΦTr. (5)

While computationally expensive of Φ is O(n2). gθ(Λ) can be
well approximated by Chebyshev polynomials

gθ(Λ) ≈
K∑
k=1

θkTk(Λ̃), Tk(r) = 2xTk−1(r)− Tk−2(r) (6)

• Graph Convolution of a signal r with a filter gθ approximated by

gθ ⋆ r ≈
K∑
k=1

θkTk(L̃)r. (7)
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Proposed Approach: GCN-based Uncertain Opinion Prediction

Graph Convolutional Networks can:

• dealing with graph data (road traffic networks, social networks)
• consider a graph convolution layer that models heterogeneous
dependency

• provide high efficiency with low complexity (i.e., linear time
complexity) based on the Chebyshev approximated

However, GCN cannot be directly applied to predict ωx because it
cannot model the opinions directly.
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A Probabilistic Model of Uncertain Opinions in SL

• Following Bayesian distributions:

yi ∼ Bern(yi;pyi);pyi ∼ Beta(pyi ;ωyi) (8)

• The PDF of yi based on its opinion ωyi can be calculated as

q(yi;ωyi) =
∫
Beta(pyi ;ωyi)Bern(yi;pyi)dpyi = Bern(yi;

αyi
αyi + βyi

) (9)

where ωyi = (αyi , βyi).
• The joint PDF function of x and y:

q(x, y;ωx, ωy) =
N∏
i=1

q(xi;ωxi)
M∏
j=1

q(yj;ωyj) (10)
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A GCN Model

• A GCN model defines a conditional PDF p(x, y|r; θ) by using a
softmax output layer that produces a ((N+M)× 2)-dimensional
soft prediction matrix px,y ∈ [0, 1](N+M)×2 as defined below,

px,y = g(r;A, θ) : RM+N → [0, 1](M+N)×2, (11)

• The conditional PDF function p(x, y|r; θ) has the form as

p(x, y|r; θ) =
N∏
i=1

p(xi|ri; θ)
M∏
j=1

p(yi|rN+j; θ) (12)

where p(xi|ri; θ) =
∏2

k=1[gi,k(r,A; θ)]xi,k and
p(yi|rN+j; θ) =

∏2
k=1[gi+N,k(r,A; θ)]yi,k .
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Bridging the Two Models

• Probabilistic Model q(x, y;ωx, ωy) cannot model the
heterogeneous dependencies.

• GCN model p(x, y|r; θ) is cannot model the opinions directly.

Transferring of the dependency information from the GCN model to
the probabilistic model of opinions for predicting opinions ωx .

min
ωx

KL
( T∏

t=1
q(x(t), y(t);ωx,ωy)∥

T∏
t=1

p(x(t), y(t)|r(t); θ(ℓ))
)
, (13)

Estimation of θ for the GCN model based on feedback from the
predicted opinions ω(ℓ)

x at iteration ℓ.

θ(ℓ+1) = argmin
θ

T∑
t=1

M∑
i=1

2∑
j=1

πy(t)i,j · log gi+N,j(r
(t), A; θ) +

T∑
t=1

N∑
i=1

2∑
j=1

(1− π)x̄i,j log gi,j(r(t), A; θ) (14)

predicted opinions ω(ℓ)
x are given
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Bridging the Two Models
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Datasets & Experimental Setting

• Road traffic datasets:

Dataset name # nodes # edges # weeks # snapshots in total
D.C. 1,383 1,878 43 3440

Philadelphia 603 708 43 3440

• Parameter settings
• Time window size: T ∈ {2, 3, 6, 8, 11},
• Uncertainty mass values: u ∈ {50%, 40%, 25%, 20%, 15%}
• Test Ratio: TR ∈ {10%, 30%}

• Performance metrics:

EB-MSE(ωx) =
1
N
∑N

i=1

∣∣∣ axi
axi + bxi︸ ︷︷ ︸
prediction

−
a⋆xi

a⋆xi + b⋆xi︸ ︷︷ ︸
ground truth

∣∣∣ (15)

• Computation time metric: seconds
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Result and Analysis

• GCN-based outperforms among all methods
• As uncertainty mass, u, increases, high resilience (low sensitivity) with
GCN-based is observed

• As the test ratio increases, the performance of all methods becomes
low
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Result and Analysis

• As the network size grows, the performance of all methods become
worse except GCN-based

• GCN-based method outperformed with heterogeneous data (high
uncertainty and test ratio).
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Result and Analysis

• When the network size increases, the time complexity of SL
increases in an exponential order while those of GCN-based
approach and CSL increase in a linear order.

• GCN-based method outperforms SL and CSL without
experiencing performance degradation from test ratio 10% to
30% since the GCN model is semi-supervised learning,
non-sensitive with the growth of the test ratio size.
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Conclusion

1. GCN-based method outperforms with heterogeneous
data that can be effectively handled by the graph
convolution.

2. GCN-based method shows less sensitivity over a
wide range of the uncertainty mass, implying high
resilience, compared to CSL and SL.

3. The performance order in running time follows:
GCN-based > CSL > SL, where the running time
complexity of the GCN-based model is linear.
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Thank You!

Questions?
Reach Xujiang Zhao at
xzhao8@albany.edu

UAB 401, 1215 Western Ave, Albany, NY, USA
University at Albany, SUNY
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